McStas Union project v0.91

— Mads Bertelsen

Figure 1: Left: Picture of LSCO sample taken by Pia Jensen Ray. Right: Recreation of sample and sample

holder using Union components, output by mcdisplay.

Mads Bertelsen - July 11, 2016 2
Contents

1 The Union McStas project 3

2 Demonstration 4

2.1 Replica of sample holder L 4

2.2 Cryostat with powder samples L L 5

2.3 Cryostat with co-aligned and twinned single crystals 5

3 Algorithm 8

4 Installation 10

5 Using the Union components 10

5.1 Scattering processes e e 11

5.1.1 Incoherent_ process. 11

5.1.2 Powder_ process 12

5.1.3 Single_crystal_process 13

5.2 Union make material 14

5.3 Geometry components oo e e e e 15

5.3.1 Union_cylinder 15

5.3.2 Union DOX e e e e e e e e 17

5.4 Union_ master e 18

6 A simple instrument 19

7 Tagging output from Union component 20

8 Validation 21

8.1 Incoherent scattering L L L e 21

8.2 Powder scattering L. 21

8.3 Single crystal L 22

8.4 Conclusion on validation L 23

9 Adding a new physical process 24

10 Adding a new geometry 24

11 Planned features 25

12 Known bugs 25

Mads Bertelsen - July 11, 2016 3

1 The Union McStas project

The McStas ray tracing package was made to simulate a linear succession of modular components separated in
space. This allows contributions from different users to be assembled into one instrument, as long as each part
is isolated in space, and only rays travelling through these components in the specified order is to be simulated.
This approach is excellent for simulating the intended beampath for neutron scattering instrumentation, but
ignores the unintended paths. Furthermore some of the most complex code is located in the sample simulation,
and as it is isolated spatially it needs to be a single large McStas component.

The McStas Union components is a set of components that is intended to fundamentally change how McStas
works by allowing multiple scattering independent of the order in which these components are placed into a
McStas instrument file, and thus simulating not just the intended beampath, but also all others. In addition
it separates physics and geometry with the aim of making it quicker to add new physics or geometry into the
project. The scattering physics is further divided into physical processes, and writing such a process is kept as
easy as possible, only requiring a description of the cross section as a function of wavevector and a description
of a single scattering event.

A schematic view of a McStas instrument file is shown in the left part of figure 2 where the linear succession
of components can be seen. The only possible change from the specified order would be if a component is
skipped because the ray didn’t intersect with a certain part of the instrument. The approach used by the Union
project is seen in the right part of the figure, where all the ray tracing happens in a single master component
that works around McStas in order to achieve native multiple scattering between a number of components.
There is however no issue in using both regular McStas components and Union components in one McStas file,

as long as the order is such that the Union master component is placed appropriately.

&)
© 50 N
NS S e (1P
60&0 g\)\é ((\Ooo & 6@@9 ?&\ﬂ ¢
NN N NN
NSNS A LS
\
\
Traditional McStas instrument McStas instrument file using Union components

Figure 2: The linear succession of components in a McStas instrument file, and how the Union components

circumvent this restriction by collecting all simulation to a single component.

The resulting simulation is built from so called ”"volumes” which is a geometry placed in the simulation with
some properties including a priority, an absorption cross section and a material definition that can include any
number of physical processes.

The native multiple scattering of the Union components makes it possible to place volumes in parallel to
create complex sample environments, detector tanks and the like. Because of the priority property it is even
allowed to overlap different volumes to carve out entrance windows, hollow parts or simply layers of different
materials, as the volume with highest priority will occupy the space where they overlap.

For a user familiar with McStas these new features are available with a minimum of learning, as the input
is done using small components in the traditional McStas style, the only addition being that the user needs to
link components together with some new parameters.

This report shows the current status of the project and will serve as an early version of the manual for the

component set.

Mads Bertelsen - July 11, 2016 4

2 Demonstration

Here the flexibility of the Union McStas components is demonstrated by showing examples of what can be

created.

2.1 Replica of sample holder

The flexibility of the geometrical part of the Union project is demonstrated nicely by figure 1 on the front page
where a sample holder with sample is replicated. Even the cut in the sample is replicated by using a box to
cut a shelf in the sample, and a small piece of aluminium runs in this gap as on the picture. In figure 3 an
absorption picture of the geometry can be seen, where the aluminium absorption cross section is exaggerated.
This could have been done using the any-geometry in McStas, but by using the Union project the data input is
easier, all the different parts can have different properties, and the geometry need not be closed or non-convex.

Y position [em]

X position [cm]

Figure 3: Mecdisplay output and absorption picture for the sample holder model shown on the front page.
Aluminium cross section for absorption exaggerated to make details clear.

Mads Bertelsen - July 11, 2016 5

2.2 Cryostat with powder samples

It is feasible to create a simple model of an entire cryostat with several layers of aluminium, sample stick,
sample holder and multiple sample containers while still being able to run the simulation on a laptop. Such an
example is shown in figure 4, 5 and 6. To show the possibilities a weird sample holder was simulated, which
includes a frame and 4 aluminium containers with different powders. One of the containers contain a mixture
of two powders, and multiple scattering between the different powders in the same volume is simulated. On my
personal laptop, simulating 1E6 rays with this geometry, that contains 38 volumes, takes under 2 seconds.

i
— | %‘ﬁ 70
%:,; i ,‘,/_:/
60
50
Eaeee
il 'g 40
i
=t
.2
2 30
o
o
—

-10 0 10 20
X position [cm]

Figure 4: Left: Mcdisplay output for cryostat model created with Union components. The cryostat is colored

green, the sample stick red, and the sample holder blue. Right: Absorption picture of the geometry.

2.3 Cryostat with co-aligned and twinned single crystals

A sample holder with 4 co-aligned and twined single crystals is placed in the same cryostat as in 2.2 and are
all illuminated by the beam. The twinning is not simulated as two different spatial parts of each crystal, but
as two separate processes, one taking 70% of the volume and the other 30%. The co alignment is done for the
largest part of each crystal, and the smaller twin thus have a small random angular deviation, here in the order
of 0.3°.

The samples mounted on a sample holder is shown in figure 7 with the resulting scattering pattern on a cold
beam. A zoom in on two Bragg peaks can be seen in figure 8.

The features of the current version

The current version of the Union project features two geometries and three scattering processes as shown in
table 1. These are described in detail later. It is intended that a user can contribute a physical process with

significantly less work than contributing an entire component. It requires more work to contribute a new

Mads Bertelsen - July 11, 2016 6

4 120
. 100
- 2
| === | LE)
= 80
o
2 0
EN = g 60
>
= 2
™ 40
== == -4 20
| -4 2 0 2 4
I X position [em]

Figure 5: Left: Zoom in on mcdisplay output for cryostat model created with Union component, here showing
the sample containers housed in the sample position of the cryostat. A ray which interacts with all 4 samples is

shown. Right: Absorption picture of the geometry.

7 500
6 400f 7]
— =l
&) 5 % 300 1
g)
E z
= 4 B L |
3 § 200
3 100 1
2 O 1 1 L L L L
-100 0 100 30 50 70 90 110 130 150
Longitude [deg] Longitude [deg]

Figure 6: Left: Sphere detector arround the entire setup, the colorscale is for the logarithm of the intensity.

Right: Banana detector showing the resulting mess of powder lines.

geometry, but should still be manageable. The core of the component adds many features so that they do not
need to be added in processes or geometries.

Geometries | Scattering processes

Cylinder Incoherent
Box Powder

Single crystal

Table 1: List of currently available geometries and scattering processes.

Absorption

Absorption is handled in the core of the component with a absorption cross section property for each defined

volume.

Mads Bertelsen - July 11, 2016

10
8
50
EL 6
=,
[} .
g 0 " 4
5 . 2
-50
; 0
- -2
-100 0 100
Longitude [deg]

Figure 7: Left: mcdisplay output for the Union components simulating 4 twined and co aligned single crystals
on a sample holder. The crystals are blue, the Aluminium rings holding them are red, and the sample holder

green. Right: Scattering output from displayed geometry with all samples illuminated by a white beam.

10 100 60
15
80
— 5 —
on on
S, 60 'ESS 10
3 <
R E
£ 0 %
3 s 350 = 5
i 20
-10 0 45 0
62 64 66 68 70 36 38 40 42

Longitude [deg] Longitude [deg]

Figure 8: Detailed view of Bragg peaks from co aligned twined crystals.

Multiple scattering
Multiple scattering between all defined volumes and all processes automatically, meaning a contributor only

needs to worry about a single scattering event.

Collecting many processes to a material

Each volume have a material definition, and this can contain any number of processes. In each step the cross
section for all processes are calculated by functions defined in the physical process, but the core makes the Monte

Carlo choice to select between the processes (and transmission) when the ray is propagated within volumes.

Overlapping of volumes

It is allowed to overlap volumes, which is handled by assigning each volume a priority. When two volumes
overlap, the region of space they both occupy is taken by the one with the highest priority. In this way
complicated geometries can be built, for example by multiple concentric cylinders to build up the walls of a
cryostat. The mcdisplay only shows the part of the volume that is present, making it easy to check if mistakes

were made when setting the priority of overlapping volumes.

Mads Bertelsen - July 11, 2016 8

Forced interact

Many McStas sample components have an option called p_interact that will set the probability to interact
with the sample instead of the ray being transmitted through. In Union components the core handles this, and
allows both to set the probability to interact with a certain volume, and to set the fraction of scattering events

caused by each physical process assigned to the volume.

Focusing

In McStas focusing is used to direct the beam in a certain direction, and all the common options have been
made available through the standard McStas functions, but it is up to each physical process component to use

the created structure. If desired, physical processes can add additional focusing different from the standard.

Exit volumes

Normally the Union components will continue the simulation of a ray until it escapes the spatial region it covers.
If one wants a regular McStas component within this space, it is possible to set an exit volume around such a
component. Once the ray enters such a volume, the Union component stops and the next McStas component
is executed, and the ray can thus not re-enter the Union component. This can for example be used to have

monitors within a detector tank.

Tagging
A tagging system tracks the path through the volumes, and saves the order in which volumes and processes
are visited. All these histories are collected and sorted after which provide the highest intensity. This gives the

user a quick overview over which histories are relevant for the simulation, and gives valuable input in deciding

how to set the interact parameters to better sample the histories considered important.

Gravity

The components does not support gravity, when gravity is used propagation still happens without gravity within

Union components. The work needed to support gravity is to update the intersection functions.

Polarization

The component does not support polarization yet.

3 Algorithm

The most important part of the Union component is the trace algorithm which is outlined below in a pseudo
code fashion. Apart from removing optimizations, error checks, some special cases that handles vacuum and

customizations options like p_ interact, this is an accurate description of the trace loop.

Mads Bertelsen - July 11, 2016 9

find current volume index from starting position
done = 0
while(done = 0) {
calculate intersections with volumes on I list if not yet calculated
find the lowest intersection time among these, t0
if (A lowest intersection time is not found) {
done =1
} else {
calculate my (inverse penetration depth) for each process in current volume
calculate my sum = sum of the calculated my values
if (rand01 > exp(—t0*vxmy_sum)) {
select scattering process from weighted choice between my values
scattering time = —log (1l — randOmax (1l — exp(—myxlength_ to_intersection)))/my
propagate ray scattering time
absorption correction exp(—my_a*(2200/v)xscattering_time=*v)
run scattering function for appropriate process —> new velocity vector
clear table of calculated intersection times
} else {
propagate ray t0
absorption correction exp(—my_a*(2200/v)x*v*t0)
if (the next intersection is with the current volume) {
search D list for volume with highest priority that contain ray position
new current volume index is set

} else {

new current volume index corresponds to the volume that was intersected

Switch statements on selecting the right geometry and scattering process is avoided by using function pointers
assigned in initialize, both to simplify the trace section and to avoid wasting time on if statements that gives
the same answer for all rays. The mentioned I list and D list is dependent on the current volume, and stands
for intersection check list and destination list. The intersection check list for a volume contains indexes of other
volumes that needs to be checked for intersection when the ray is in that specific volume. These are generated in
initialize and vastly reduce the computational time required by the component, as it avoids checking unnecessary

intersections and destinations.

A visualization of the trace algorithm in shown in figure 9. Here the concept of priority is shown, which
is important when two volumes overlap in space, as the one with highest priority will occupy the space with
overlap. In the first step the ray is in the vacuum around the component, and the intersection check list
appropriate for this situation is used, which only contains the blue and green volume. Calculating intersections
with the red and orange volume at this point would be a waste of time, as the ray can not go directly from
the surrounding vacuum to either of these two volumes. When the ray enters the green volume in step 3, it
becomes relevant to calculate the intersection with the red volume, and it is thus calculated. At the scattering
in step 4, all previously calculated intersection times are cleared, and new are calculated with the green and red
volume, but not the blue and orange, as the ray would need to travel through other volumes first. Only after

propagating out of the green volume in step 5 is the intersection time with the blue volume calculated.

In step 5 the destination list for the green volume is used, as it is not clear which volume the ray will end in
after intersecting the current volume. The destination list for the green volume contains the blue volume, and
the surrounding vacuum, and it is thus checked if the position is inside the blue volume or not to determine
which of these is the correct answer, here it was the blue volume. Similarly in step 6, the destination list for
the blue volume is used, which contains the surrounding vacuum and the green volume, but as the ray is not

inside the green box it is considered in the surrounding vacuum.

Mads Bertelsen - July 11, 2016 10

1 priority =6.2| .- 2 priority =6.2| .
P .-®
priority = 4.2 priority = 4.2
/V' priority = 7.8 priority = 7.8
Ray finds intersection with blue and green volume Ray is propagated to blue volume
3 priority =6.2| .. 4 priority =6.2| .-
priority = 4.2 —Ca priority = 4.2 =
T
priority = 7.8 priority = 7.8
Ray propagates to green volume without scattering Ray scatters before reaching next intersection
5 . priority =6.2| .- [§) priority =6.2| .-
priority = 4.2 @ = priority = 4.2 -
priority = 7.8 priority = 7.8
Ray propagates out of green volume Ray propagates out of blue volume

Figure 9: 2D visualization of the Union trace algorithm with a single scattering event, showing how unessecary

intersection calculations are avoided.

4 |nstallation

Installation of the McStas Union components is as with all other McStas components, they can be placed in

the folder of the instrument file or in the McStas path. There is no additional software needed.

5 Using the Union components

In this section each Union component and its options are described in turn. The reason for splitting the code
over multiple components is to facilitate scalable, clear input of data. This approach is the major difference
between the Union McStas components and previous components in terms of practical usage of the code.

The components are used in a specific order, as one first defines a number of physical processes using process
components, then collects these into a material, and finally one places geometries in the simulation, each with
a specific material. A geometry placed in the simulation with a defined material is referred to as a volume.

These components are all described in that order, and examples of each individual component is shown here,

while an example showing how they work together is shown in section 6.

Mads Bertelsen - July 11, 2016 11

5.1 Scattering processes

A scattering process has no physical shape and only needs to describe the probability for scattering and what
happens in a scattering event.

All processes support the interact_fraction options, which can be set to —1 to disable, and otherwise a
number between 0 and 1 to describe the fraction of scattering events that select this particular process. When
assigning multiple processes to one material, the sum of their interact fractions must be 1, and if a single

interact_ fraction is missing, it will be set so that the sum is 1.

5.1.1 Incoherent_process

The incoherent process is loosely based on the Incoherent McStas component. The process is isotropic and
elastic. The setting parameters are shown in table 2. This component supports focusing, which is selected for

each geometry component that chooses a material that contains this process, and is explained in section 5.3.

Parameter name explanation unit default
sigma Incoherent cross section per unit cell [barns]
unit_cell volume | Volume of unit cell [A3)

packing_ factor Ratio between experimental powder density and theoretical [0-1] 1
interact_ fraction | Forces this fraction of processes to be incoherent [0-1] -1

Table 2: Setting parameters for Incoherent__process.comp

Below is an example of the Incoherent_ process component being used to defined a process called ”Vana-
dium__incoherent”. The name of a process is very important, as it is needed later, however its position in space

is irrelevant.

COMPONENT Vanadium__incoherent = Incoherent_process(sigma=6.08, packing_factor=1,
unit_cell _volume=13.827, interact_fraction=0.5)
AT (0,0,0) ABSOLUTE

Mads Bertelsen - July 11, 2016 12

5.1.2 Powder_process

The powder process is a copy of the PowderN McStas component. Parameters names are the same, but
absorption, incoherent scattering and geometry is removed while fraction_interact is added. An overview of
the parameters is shown in table 3. All parameters after the dividing line is normally taken from the data file
specified under reflections. This process does not support focusing defined in geometry inputs, but adds it’s

own through the d_ phi parameter.

Parameter name | explanation unit default

interact_ fraction | Forces this fraction of processes to be incoherent [0-1] -1

reflections data file containing powder lines string "NULL"

format Name of the format, or list of column indexes

packing_ factor Ratio between experimental powder density and theoretical unit less

d_ phi Vertical angular range to focus to, e.g. detector height [deg,0-180] 0
Remaining options used to overwrite parts from datafile

Ve Volume of unit cell [A3]

delta d_d Global relative delta_d_d/d broadening [0-1] 0

DW Global Debey-Waller factor when 'DW’ column is not available [0/1] 0

nb_ atoms Number of sub-unit per unit cell [1]

density Density of material. rho=density/weight/1e24*N__A. [g/cm3]

weight Atomic/molecular weight of material [g/mol]

barns Flag to indicate if ||F||? from 'reflections’ is in barns or fm? 0(laz)/1(lau)

Strain Global relative delta_d_d/d shift [ppm] 0

Table 3: Setting parameters for Powder__process.comp

Below is an example of a simple powder process called ”Al__powder" that gets most information from the
standard McStas Aluminium laz datafile, and uses focusing to only emit rays in a +10° interval (from the xz

plane).

COMPONENT Al_Powder = Powder_process(reflections="Al.laz", d_phi=20)
AT (0,0,0) ABSOLUTE

Mads Bertelsen - July 11, 2016 13

5.1.3 Single_crystal_process

The single crystal process is a copy of the Single crystal Mcstas component. Parameter names are kept
the same, with the removal of references to absorption and incoherent and addition of interact_ fraction and
packing_factor. The parameters are shown in table 4. The powder/PG modes and the crystal curvature mode
have not been ported yet, and is thus not yet supported.

Since the single crystal process is not isotropic, it will follow the orientation of the volume it is assigned to,
but it is possible to add an additional rotation when defining the process by using the ROTATED keyword, it
however needs to be relative to ABSOLUTE and not another component.

There is some issue in both the original Single crystal component and the Union process where a ray can
be trapped in a near infinite loop. In the Union process there is currently a limit of 10* iterations, after which
the ray is discarded.

An example of the use of the Single_ crystal process component is shown below, where the orientation is
rotated 1 degree around the McStas x-axis and 5 degrees around the McStas y-axis whenever this process is
assigned to a geometry.

COMPONENT YBaCuO__single_crystal = Single_crystal_process(

delta_d_d=delta_d_d, mosaic = mosaic,
ax = 3.8186, ay = 0, az = 0,

bx = 0, by = 3.8843, bz = 0,

cx = 0, cy = 0, cz = 11.6777,

reflections="YBaCuO.lau", barns=0, packing_factor=1)
AT (0,0,0) ABSOLUTE
ROTATED (1,5,0) ABSOLUTE

Mads Bertelsen - July 11, 2016

14

(reflections=NULL), barns=0 for lau type files

Parameter name | explanation unit default
reflections data file containing powder lines string "NULL"
delta_d_d Lattice spacing variance, gaussian RMS [1] 1E-4
Crystal mosaic (isotropic), gaussian RMS.
mosaic Puts the crystal in the isotropic mosaic model state, [arc minutes]
thus disregarding other mosaicity parameters.
Horizontal (rotation around lattice vector a) mosaic (anisotropic),
. gaussian RMS. Put the crystal in the anisotropic crystal vector .
mosaic_a .) [arc minutes]
state. I.e. model mosaicity through rotation around the crystal
lattice vectors. Has precedence over in-plane mosaic model.
) Vertical (rotation around lattice vector b) mosaic (anisotropic),)
mosaic_b . [arc minutes]
gaussian RMS.
. Out-of-plane (rotation around lattice vector ¢) mosaic)
mosaic_ ¢ i i] [arc minutes]
(anisotropic), gaussian RMS.
In Plane mosaic rotation and plane vectors (anisotropic),
mosaic_ A, mosaic_ B, A_ h, A kA 1,B hB kB 1
Puts the crystal in the in-plane mosaic state. Vectors A [arc__ minutes,
mosaic_ AB and B define plane in which the crystal rotation is defined, arc__minutes,
and mosaic_ A, mosaic_ B, denotes the resp. mosaicities 1,1,1,1,1, 1]
(gaussian RMS) with respect to the the two reflections
chosen by A and B (Miller indices).
recip__cell Choice of direct/reciprocal (0/1) unit cell definition [0/1] 0
ax Coordinates of first (direct/recip) unit cell vector [AA or AA™]]
ay a on y axis [AA or AAT1]
az a on z axis [AA or AAT1]
bx Coordinates of second (direct/recip) unit cell vector [AA or AA™1] 0
by b on y axis [AA or AAT1] 0
bz b on z axis [AA or AA™1] 0
cx Coordinates of third (direct/recip) unit cell vector [AA or AAT1] 0
cy c on y axis [AA or AAT1] 0
cz ¢ on z axis [AA or AA™1] 0
interact_fraction Forces this fraction of processes to be 0-1] 1
single crystal reflections
packing factor Ratio between experimental powder density and theoretical unit less 1
Remaining options used to overwrite parts from datafile
Unit cell angles alpha, beta and gamma. Then uses norms of
aa . [deg]
vectors a,b and c as lattice parameters
bb Beta angle [deg]
cc Gamma angle [deg]
Flag to indicate if ||F||? from 'reflections’ is in barns or fm?.
barns barns=1 for laz and isotropic constant elastic scattering [0/1] 0

Table 4: Setting parameters for Single crystal process.comp

5.2 Union_make_material

The task of the Union_make material component is to collect a number of physical processes into a material,

and gives it a name that can be used to refer to this material later. The setting parameters for the component

are shown in table 5. The process_ string takes a comma separated list of process names that have already

been defined in the instrument file, and collects the corresponding processes into a single material that can be

Mads Bertelsen - July 11, 2016 15

used when defining a volume using a geometry component. If the process_string is not set, the make material
component will collect the processes defined between itself and the previous make material component. It is
recommended for new users to manually enter the process_ string to explicitly show which processes are used.
If the absorber option is set, no processes will be collected regardless of the process_ string, and the material
will be an absorber.

It is not allowed to call a material "Vacuum" or "Exit", as these names are reserved to make Vacuum and

Exit volumes. One can think of these as being defined per default.

Parameter name | explanation unit default
process_ string Comma separated names of defined processes | [string] 0
my_absorption | Inverse penetration depth at v = 2200 m/s [1/m]

absorber If no processes wanted, set absorber to 1 [0/1] 0

Table 5: Setting parameters for make material.comp

Below is an example of a material called ”Weird__material” being made with the processes from the last three
examples, "Vanadium__incoherent”, "Al_ powder” and "YBaCuO_ single_ crystal". The name ”Weird__material”

is to be used when assigning this material to a geometry to make a volume.

COMPONENT Weird material =
Union__make_material (process_string="Vanadium__incoherent , Al_powder,
YBaCuO_single_crystal", my_absorption=100%1.2/66.4)
AT (0,0,0) ABSOLUTE

5.3 Geometry components

All geometry components have some common setting parameters describing necessary properties of a volume,
which are described in table 6.

The material _string is used to select a user defined material made with make material, "Vacuum" or "Exit".
A Vacuum volume has no physical processes and a zero absorption cross section. An Exit volume lets the ray
exit the multiple scattering loop when the ray is propagated into this volume, which is useful for adding detectors
or other components inside a complicated geometry.

The priority of a volume needs to be unique, the component will exit if this is not the case. The priority
is used to determine which volume occupy space that both geometries cover. When placing a volume inside
another volume, the one on the inside needs the highest priority, otherwise it will not be used.

The visualize option can be used to avoid mcdisplay drawing the volume, which can be useful to avoid clutter
in mcdisplay.

The p_ interact option sets the probability for a ray to undergo a scattering event in the volume, regardless
of the length travelled in the volume. In contrast to other McStas implementations of p_ interact, this applies
for all steps of multiple scattering as well, meaning setting a interaction probability of 50% would result in a
25% chance of two scattering events. It is hence not advised to set this parameter close to 1, as it results in
high probabilities for higher order multiple scattering.

The focusing options are standard for McStas, leaving them all to the default value of 0 will disable focusing,
allowing scattering into 4m. It is not guaranteed that all processes assigned to a material support focusing, but

all that does will follow the focusing set in the geometry component.

5.3.1 Union_cylinder

The Union_ cylinder component uses the standard McStas cylinder intersect function. The cylinder symmetry
axis is along the McStas y axis as shown in figure 10. The McStas AT and ROTATED keywords are used as
normal. No ray tracing is done in this component, it merely sets up for the master union component.

Below are two examples of the use of the Union_ cylinder component, the first using the already defined

"Weird__material” to make a cryostat wall, and another instance of the Union_ cylinder to hollow it out using

Mads Bertelsen - July 11, 2016 16
Parameter name explanation unit default
material_ string String selecting a defined material string
priority input The priority of the volume double
visualize Control if this volume should be shown in mcdisplay [0/1] 1
p__interact Probability for scattering event when propagating in this volume [0-1] 0
Focusing position
target_ index Index of component used as focusing target integer 0
target_ x Focusing target coordinate if target_index not set [m] 0
target_y Focusing target coordinate if target_index not set [m] 0
target_ z Focusing target coordinate if target_index not set [m] 0
Angular focusing
focus_aw Angular focusing in width direction [deg] 0
focus_ah Angular focusing in height direction [deg] 0
Rectangular focusing
focus_xw Spatial focusing rectangle width [m] 0
focus_ xh Spatial focusing rectangle height [m] 0
Circle focusing
focus r Spatial focusing circle radius [m] 0

Table 6: Setting parameters for make material.comp

height/2 /— >

radius T

—height/2 < >

Figure 10: Basic cylinder geometry used for Union_cylinder.

Parameter name | explanation unit | default
radius__input Radius of the cylinder | [m]
height__input Height of the cylinder | [m]

Table 7: Setting parameters for Union_ cylinder.comp

the predefined ”Vacuum” material. By displacing the second 1 cm upwards, a 1 cm thick bottom is created

while leaving the top open.

Mads Bertelsen - July 11, 2016 17

COMPONENT cryostat__wall = Union_ cylinder(radius_input=0.1, height_input=0.2,
priority__input=10, material_string="Weird__material", p_interact=0.2)

AT (0,0,0) RELATIVE sample_position

ROTATED (0,0,0) RELATIVE sample_position

COMPONENT cryostat__vacuum = Union_ cylinder (radius_input=0.09, height_input=0.2,
priority__input=11, material_string="Vacuum")

AT (0,0.01,0) RELATIVE sample_ position

ROTATED (0,0,0) RELATIVE sample_position

5.3.2 Union_box

The box geometry can be a simple box, or by using the optional parameters the face at positive Z can have
different height and width, as shown in figure 11. Unique setting parameters for the Union_ box component are
shown in table 8. The McStas AT and ROTATED keywords are used as normal. No ray tracing is done in this
component, it passes all the information to the Master union component.

y
r 3
—zdepth/2 zdepth/2

vheight2/2

vheight /2

> Z

—yheight /2

—yheight2/2

Figure 11: Basic box geometry used for Union_ cylinder.

Parameter name | explanation unit | default
xwidth Width of the box [m]

vheight Height of the box [m]

zdepth Height of the box [m]

xwidth2 Optional width of the box (positive z face) | [m] -1
yheight2 Optional height of the box (positive z face) | [m] -1

Table 8: Setting parameters for Union_ box.comp

Here the Union_ box component is used to create an Exit volume that fits around a PSD_ monitor.

COMPONENT detector__exit__volume = Union_box(xwidth=0.05, yheight=0.05, zdepth=0.0001,
priority input=15.2, material string="Exit")

AT (0,0,0) RELATIVE detector_position

ROTATED (0,0,0) RELATIVE detector__position

COMPONENT detector = PSD_ monitor (xwidth=0.05, yheight=0.05, nx=100, ny=100, filename="
PSD.dat", restore_neutron=1)

AT (0,0,0) RELATIVE detector__position

ROTATED (0,0,0) RELATIVE detector__position

Mads Bertelsen - July 11, 2016 18

5.4 Union_master

The Union master component is simply called Union_master, and has no setting parameters yet. It is this
component that executes the actual simulation, and thus places the Union into the linear succession of McStas
components. In case of multiple Union_master components in one instrument file, It will include all volumes
defined after the previous Union_ master component. If any volume is defined after the last Union_ master
component, it will not be included in the simulation.

The McStas keyword SCATTER is used in a non-standard way in this component to show any point a
ray propagates from one volume to another in mcdisplay. For this reason there is a variable called num-
ber_of scattering events that can be used in EXTEND to retrieve the information normaly available through
the SCATTERED variable, and an array called scattered_ flag that contains the number of scattering events in
each volume. The example below uses these two variables to set scattering flags available in the instrument file.

COMPONENT sample = Union master ()

AT (0,0,0) RELATIVE sample_position

ROTATED (0,0,0) RELATIVE sample_ position

EXTEND

7{

if (number_of_scattering_events > 0) scattering_flag = 1; else scattering_flag = 0;
if (scattered_flag[3] > 0) scattering_flag V3 = 1; else scattering_flag_V3 = 0;

70}

Mads Bertelsen - July 11, 2016 19

6 A simple instrument

The trace section of a simple instrument file is shown to highlight the linking needed between Union components.

The file is distributed with the early versions of the code.

COMPONENT Al _inc = Incoherent process(sigma=4%0.0082,packing factor=1,unit_cell volume=66.4)
AT (0,0,0) ABSOLUTE

COMPONENT Al powder = Powder_ process(reflections="Al.laz",d_ phi=20)
AT (0,0,0) ABSOLUTE

COMPONENT Al = Union_make_material (my__absorption=100%4%0.231/66.4,process_string="Al_inc,Al_powder

VI)
AT (0,0,0) ABSOLUTE

COMPONENT Fe_inc = Incoherent_process(sigma=2x%0.4,packing_factor=1,unit_cell _volume=24.04)
AT (0,0,0) ABSOLUTE

COMPONENT Fe_powder = Powder_process(reflections="Fe.laz",d_phi=20)
AT (0,0,0) ABSOLUTE

COMPONENT Fe = Union_make_ material (my_absorption=100%2%2.56/24.04,process_string="Fe_inc,Fe_powder
Yl)
AT (0,0,0) ABSOLUTE

COMPONENT Progress = Progress_bar ()
AT (0,0,0) ABSOLUTE

COMPONENT Source = Source_simple (xwidth=0.05, yheight=0.05, dist=2, focus_xw=.05, focus_yh=.05, EO
=14, dE=2)
AT (0,0,0) RELATIVE Progress

COMPONENT Guide = Guide_ gravity (wl=0.05, h1=0.05, w2=0.05, h2=0.05, 1=12, R0=0.99, Qc=0.0219, alpha
=6.07, m=3.0, W=0.003)
AT (0,0,2) RELATIVE Source

COMPONENT sample position = Arm()
AT (0,0,12.5) RELATIVE Guide

COMPONENT Hexagonal container 1 = Union_ box(xwidth=0.01, yheight=0.04, xwidth2=0.014+2%0.01%sin (30x
DEG2RAD) , zdepth=0.01*xcos (30xDEG2RAD), priority_ input=1, material string="Al", p_interact=0.3)

AT (0,0,—0.5%0.01%cos (30*DEG2RAD) —0.00001) RELATIVE sample position

ROTATED (0,0,0) RELATIVE sample_ position

COMPONENT Hexagonal container 2 = Union box(xwidth=0.01+2%0.01*sin (30«xDEG2RAD), yheight=0.04,
xwidth2=0.01, zdepth=0.01%cos(30«xDEG2RAD), priority input=2, material string="Al", p_interact
=0.3)

AT (0,0,0.5%0.01% cos (30*DEG2RAD) +0.00001) RELATIVE sample position

ROTATED (0,0,0) RELATIVE sample position

COMPONENT Sample = Union_ cylinder (radius__input=0.008, height_input=0.36, priority__input=3,
material__string="Fe", p_interact=0.5)

AT (0,0,0) RELATIVE sample_position

ROTATED (0,0,0) RELATIVE sample_ position

COMPONENT Master = Union_master ()
AT(0,0,0) RELATIVE sample_ position

COMPONENT Banana_monitor = Monitor_nD (radius=1, yheight=0.1, options="banana, theta limits
=[20,170], bins=200",filename="banana.dat")
AT (0,0,0) RELATIVE sample_ position

Mads Bertelsen - July 11, 2016 20

7 Tagging output from Union component

The Union component writes a file called Union_ histories.dat that contains all sampled histories. A history
consist of a list of all volumes the ray entered in chronological order and all processes the ray undertook. So
all rays that goes from volume 0, to volume 1, undergoes scattering process 2 of volume 1, then goes back to
volume 0 is considered the same history. These histories are sorted after the total intensity that leaves the

Union component with this history. A sample of the top 15 histories for a simple setup is displayed here.

History file written by the McStas component Union_ master
When running with MPI, the results may be from just a single thread, meaning

intensities are divided by number of threads

——— Description of the used volumes
VO: Surrounding vacuum

V1: powder_container Material: Al PO: Al incoherent P1: Al Powder

V2: powder_inside_container Material: Cu_powder PO: Cu_incoherent_process Pl1:

Cu__powder__process

——— Histories sorted after intensity
12221626 N 1=4.188166E—-06 VO
1882051 N I=1.052731E—-06 VO —> V1 —> V2 —> V1 —> V0

1517013 N I1=6.213315E-07 VO —> V1 — V0

188661 N I=8.043799E-08 V0 —> V1 —> V2 —> P0 —> V1 —> V0
752943 N I=3.823911E-08 V0 —> V1 —> V2 —> P1 —> V1 —> V0
771437 N I=2.176363E-08 V0O —> V1 —> P1 —> V0

181532 N I=1.101451E-08 VO —> V1 —> P1 —> V2 —> V1 —> V0
286771 N I=7.628450E-09 VO —> V1 —> V2 —> V1 —> P1 —> V0

18736 N I=1.948079E—-09 VO —> V1 —> V2 —> PO —> PO — V1 — VO
75736 N I=1.319653E-09 vO —> V1 —> V2 —> P1 —> PO —> V1 — V0
33463 N I=1.100647E—-09 Vo —> V1l —> V2 —> V1 —> P1 —> V2 —> V1 —> V0
74590 N I=1.016961E-09 VO —> V1 —> V2 —> PO —> P1 —> V1 —> V0
301006 N I=6.623860E—-10 vo —> V1 —> V2 —> P1 —> P1 —> V1 —> V0
18169 N I=4.341707E-10 vO —> V1l —> P1 —> V2 —> PO — V1 —> VO
13310 N I=4.054218E-10 VO —> V1 —> PO —> V0

The file starts with a short description of each volume including what material it is made of and the scattering

processes associated with that material.

The first number in a row of data is the number of rays with this history, the next is the intensity, and
then the string which is the history itself. VX refers to volume number X, and PX refers to process number X
within the current volume. When there are volumes with different materials, PX can refer to different processes
depending on which volume the ray is currently in, meaning PO in ”V0 -> V1->P0” and "V0 -> V2 -> P0”

refers to two different processes if volume 1 and volume 2 are different materials.

In this example, 2E7 rays were simulated, but only 2.5E4 unique histories were sampled, making the data
file manageable at just 2.8MB. The size for more complicated cases can be significantly larger, and if it be-
comes problematic (needs to fit in RAM) the feature can be turned of with a simple control variable called

“enable__tagging” in the declare section of the Union__master component.

The practical uses for this data file are many. If for example one wants to estimate the background originating
from a certain part of a sample holder described by volume X, one simply adds the intensity of all histories
that scattered in that volume by searching for "VX -> P”. If only background at the detector is important, one
can place an exit volume with number Y at the detector and add the intensities for all histories that contain
the string "VX -> P” and ends in ”VY”. This have always been possible with McStas by tagging the neutrons
manually using EXTEND, but that requires running the simulation again in order to investigate a new problem,

here all histories are available after one simulation.

In the current version there are no easy ways to get the history each ray in the EXTEND section of

Union_ master, but this will be made available in later versions to make the traditional tagging method available.

Mads Bertelsen - July 11, 2016 21

8 Validation

Here results of early validation efforts are shown. It is intended to do a more comprehensive validation against

both analytical results and other McStas components later.

8.1 Incoherent scattering

A Union component of a simple cylinder was compared to the same geometry using the Incoherent McStas
component. The scattering and absorption cross section are for Vanadium. A comparison for two of the

monitors are shown in figure 12. The results are as expected.

Transmission psd Bananna detector
150 0.12
B g
kS B
5 100 5 0.1
a, e
=y 2 .
£ 50 £0.08 o mAE
k= s
0 ‘ : ‘ 0.0% ‘ ‘ ‘ : ‘ ‘
-0.02 -0.01 0 0.01 0.02 0 40 60 80 100 120 140 160
Position [m] Theta [deg]
-3
5x10 0.05

ﬁ ﬂﬂ%ﬂlﬁh T e
T g

002 —o001

Relative difference
=)
Relative difference
=)

AT AT
T T

S
(=]
pIN

0.01 0.02 0 40 60 80 100 120 140 160
Position [m] Theta [deg]

Figure 12: Left: Transmission psd for both with relative deviation below. Right: Banana detector for both with

relative deviation below. The blue is for the Union component while the red is for the Incoherent component.

8.2 Powder scattering

Here the Union components process are validated against the PowderN component. The PowderN component
have both powder and incoherent scattering, so these two Union processes are added to a single material. The
powder process is based directly on the PowderN component. There is however one important difference, as the
Union project adds multiple scattering, but this is taken into account by having separate detectors that ignore
multiple scattering. This validation have been done for many compounds, and the results for Cu are shown in
figure 13 and 14. For the banana detector where the full scattering is taken into account, a clear deviation can
be seen in areas without powder peaks, as the multiple scattering from the powder peaks are comparable to the
incoherent background. When comparing using monitors only taking single scattering into account, the results
are much closer, but perhaps better statistics could reveal some differences.

The computation time for the Union component is approximately 50% longer than the PowderN component,
which may be partially explained by excessive error checking during debug phase, but is hoped to be reduced

in the future.

Mads Bertelsen - July 11, 2016

22

Banana detector

2.5 ; :

Intensity per bin

80 100
Theta [deg]

140

160

Relative difference

80 100
Theta [deg]

0k 20 60

120

140

Relative difference

Banana detector (without multiple scattering)

2.5

Intensity per bin

gﬁ |

80 100 120 140 160

Theta [deg]

80 100 120 140
Theta [deg]

160

Figure 13: Banana detector results for Union components (blue) and PowderN (red). Left: All scattering.

Right: Only single scattering.

PSD transmission

PSD scattering (without multiple scattering)

0.05

450 ; : : 0.7
400¢ 1 06
= =£0.5¢
B 350 b
2 204
23007 1z
% % 0.3r
£ 250 E 02l
2001 b 0.1
. , , 0 .
150 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 -0.05 B
Position [m] Position [m]
4% 107‘3 ‘ ‘ ‘ ‘ : ‘ 0.2
= (=}
& &
B 0 il £
5] o
W
Q0 L
& _of s L=/
-4 L L

-0.015 -0.01 -0.005 0

Position [m]

0.005

0.01

0.015

0 0.05
Position [m]

Figure 14: Validation results for Union components (blue) and PowderN (red). Left: Transmission position

sensetive detector.

background.

8.3 Single crystal

Right: Position senestive detector that probes a few powder peaks and some incoherent

Validation results for comparison with the Single crystal component are shown in figure 15 and 16. Both

position sensitive detectors are placed directly behind the single crystal, the difference being one only detects

Mads Bertelsen - July 11, 2016 23

rays that have scattered and the other only detects rays that did not. For the detector measuring rays that
did not scatter there is a clear difference between the two components, but it is in the order of 0.1%, and likely
originates from slightly different ways of handling scattering position and absorption. Further work have to be

done to confirm which of the two approaches are correct, if any.

Another difference is the mentioned problem in the single crystal algorithm where rays can end in infinite
loops, they are terminated after 1E4 iterations in both codes, but in the Union project these are discarded, while
in the Single crystal component they are forced to escape the crystal with whichever wavevector it currently
has. For this test case the escaping wavevector would have either a direction towards the detector or away from

them, but the Union component is the one with greater intensity, meaning it is does not explain the deviation.
None of the other detectors show clear deviations.

With strongly scattering crystals it is not recommended to use the p_interact feature, as the resulting
scattering pattern is heavily dependent on very high orders of multiple scattering which will not be probed

when this feature is used.

<107 PSD transmitted 10° PSD scattered
2.5 ‘ 6 ‘
2t] 3
= =
ks B 4r
5 1.5r 1 o)
a a
z 23
£ 1 , g
2 £t
0.5r b 1k
0 0 , , ,
-0.03 -0.02 -0.01 0 0.01 0.02 0.03 -0.03 -0.02 -0.01 0 0.01 0.02 0.03
Position [m] Position [m]
-3
15210 0.1 -
Ir] i (-
2 § 0.05r
E oS - T
> g e e
s ! s TR e f
=-0.5¢ 1= X L
~ & —0.05 -
—1F 4 4 -
_1 05 , , , , , -0 01 , , , ,
-0.03 -0.02 -0.01 0 0.01 0.02 0.03 -0.03 -0.02 -0.01 0 0.01 0.02 0.03
Position [m] Position [m]

Figure 15: Validation results for Union components and Single crystal. Left: Transmission position sensitive
detector, where only neutrons transmitted are counted. Right: Transmission position sensitive detector where

only scattered neutrons are counted.

8.4 Conclusion on validation

The quick validation done here is sufficient to show the scattering processes in the Union project are in rea-
sonable agreement with the ones present in current McStas components. It also shows the ability of the Union
components to balance two different scattering processes correctly, as using two processes together was in agree-
ment with a single component hardcoded to balance these. The tests were repeated with forced interaction
fraction for the powder and incoherent processes and geometries, and the results were similar, meaning these
are also validated to a reasonable degree. In the case of the single crystal process, the results differs significantly
when using the forced interaction fractions for processes and geometries, as high number of coherent multiple

scattering events are needed to accurately describe the resulting beam.

Mads Bertelsen - July 11, 2016 24

<10° Banana Union

N
n

12
‘

—_
W
T
L

Lattitude [deg]

—_
T
L

Intensity per bin

<3
Lt
P
—
(=3

- ; 50 100 150 200 250 300 350
80 100 120 140 160 .
Theta [deg] Longitude [deg]

Single_crystal.comp

Relative difference

0 50 100 150 200 250 300 350
Longitude [deg]

120 140 160

20 40 60

80 100
Theta [deg]

Figure 16: Left: Banana detector results for Union components (blue) and Single crystal (red). Right: Scat-

tering into 47, Union components top and Single_crystal bottom, logl0 of intensities on colorscale.

9 Adding a new physical process

It is of highest priority that adding a new physical process to the Union project is as easy as possible. It
does however have some requirements not present when adding a normal McStas component. The main part is
to create a process component, which will define the functions for determining scattering probability and the
function called for scattering events. The component initialize and input can be used as normal. In many cases
calculations done in the function that determines scattering probability can be useful for calculating the final
wavevector after the scattering event, and there is thus the possibility to transfer information between the two
using a structure. At the end of the component file the information is packed into a global variable, but this
part will be identical for all process components and is thus not a concern. A new_ process template is provided
to get new users started.

In addition to making the component, one has to add a declaration of the structure used for transporting

in the Union_ functions.c file under the data_ transfer union.

10 Adding a new geometry

The work required to add a new geometry is significantly larger, and will thus probably be reserved for the
developer. The reason is that in addition to the obvious requirement of adding a function describing the

intersection between a ray and the new geometry, functions are needed for the following tasks.
» Check if a point is within the new geometry

» Transform necessary vectors from the geometry components frame of reference to the Union_ master

components frame of reference

v

Simple mecdisplay code
» Check if the new geometry overlaps with all other types of geometries

» Check if the new geometry is completely inside all other types of geometries

Mads Bertelsen - July 11, 2016 25

» Check if all other geometries are completely inside the new geometry

As more geometries are added, the work required to add a new geometry thus increases. In addition to the
above, a reference to a struct to storage the geometrical parameters needs to be made in Union__ functions.c, and
the generate__children_ lists/generate_ overlap_lists functions need simple updates to use the new functions. All
memory allocations are ready for geometries where more than two intersection times, but currently set to only

two intersections for all volumes.

11 Planned features

So far the overwelming majority of the work have gone into the core of the Union project, the Union_ master
component. With this release of beta code, the focus will shift to adding more physical processes and geometries,
even though there is still work to be done on the core. The next geometries will probably be a sphere and a
cone. The next scattering processes will probably be inelastic, as the basic types of elastic scattering is covered.

The tagging system will be expanded, probably with the option to add additional details to the data collected,
like the mean and standard deviation of the wavelength, time or similar for each history. In addition the data
file should be placed with the other detector files, and it should have a custom name.

Input sanitation is also an important aspect, as the code needs to tell the user what went wrong in case of
errors in the input. This is largely non-existent in the current version.

There are also plans for adding a new kind of process, a surface process, which can be effects like supermirror
reflectivity and refraction.

The direction of the project and priorities of the above tasks depends on feedback from beta users (all whom

read this document), which is highly appreciated.

12 Known bugs

It is still early code, meaning there are probably bugs to be discovered. The biggest problem at the moment is a
crash which happens when two planes are overlapping perfectly, as the algorithm can not find which of the two
volumes the ray enters when intersecting with this plane, and in most cases that neutron is lost. Remember it is
perfectly fine to overlap volumes, so instead of letting two volume just touch, make them overlap a tiny bit, or
leave a tiny amount of space in-between. Under normal circumstances, even in the complicated demonstrations
shown here, less than one ray out of 1E11 should be lost. When using the Single crystal processes however there
can however be significantly more due to the problems described in section 5.1.3. This early code still makes
many unnecessary checks to confirm the code is working correctly, meaning the user will be notified if problems
occur.

The terminal output from the components is large, and will be reduced in the future.

» Crash if two planes of boxes / ends of cylinders overlap perfectly

» Can not compile if no processes are defined before Union_make material

» Can not compile if no materials are defined

» Can not compile if no geometries are defined

» Crash if a material_string is set to something not defined

» When using MPI only history for one thread is written to disk / not sorted correctly
» Mecdisplay zoom level not always reasonable

» Near infinite loops in Single crystal process

